Referenties

Referenties#

Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T. B. M. J., Bilodeau, L., Robichaud, É., Thiémonge, N., & Bobée, B. (2006). Predicting river water temperatures using stochastic models: case study of the Moisie River (Québec, Canada). Hydrological Processes, 21(1), 21–34. https://doi.org/10.1002/hyp.6353

Arnell, N. W. (1999). The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Change, 9(1), 5–23. https://doi.org/10.1016/s0959-3780(98)00015-6

Bestand: Rijn map.jpg - Wegenwiki. (z.d.). https://www.wegenwiki.nl/Bestand:Rijn_map.jpg

Beuthe, M., Jourquin, B., Urbain, N., Bruinsma, Lingemann, I., Ubbels, B., & Van Heumen, E. (2012). Estimating the Impacts of Water Depth and New Infrastructures on Transport by Inland Navigation: A Multimodal Approach for the Rhine Corridor. Procedia: Social & Behavioral Sciences, 54, 387–401. https://doi.org/10.1016/j.sbspro.2012.09.758

Brauer, C. C., Teuling, A. J., Torfs, P. J. J. F., and Uijlenhoet, R.: The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313–2332, https://doi.org/10.5194/gmd7-2313-2014, 2014.

CCNR. (2020). INLAND NAVIGATION IN EUROPE. In CCNR MARKET INSIGHT. https://www.ccr-zkr.org/files/documents/om/om20_III_en.pdf

Centrale Commissie. (2011). PROTOCOL 9. In Klimaatverandering en Rijnvaart. https://www.ccr-zkr.org/files/infovoiedeau/Resolution2011-II-9_nl.pdf

Christodoulou, A., Christidis, P., & Bisselink, B. (2020). Forecasting the impacts of climate change on inland waterways. Transportation Research. Part D, Transport And Environment, 82, 102159. https://doi.org/10.1016/j.trd.2019.10.012

Core Writing Team, Pachauri, R. K., Meyer, L., & Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Synthesis Report. IPCC. https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

Dooge, J. C. I. (1992). Hydrologic models and climate change. Journal Of Geophysical Research, 97(D3), 2677–2686. https://doi.org/10.1029/91jd02156

High water in CW 50 | Contargo. (z.d.-a). https://www.contargo.net/en/business/businessnews/detail-business/high-water-forecast-for-cw-50/

Harrisson, T. (2021, 11 oktober). Explainer: How ‘Shared Socioeconomic Pathways’ explore future climate change. Carbon Brief. https://www.carbonbrief.org/explainer-howshared-socioeconomic-pathways-explore-future-climate-change/

Hut, R., Drost, N., Van de Giesen, N., Van Werkhoven, B., Abdollahi, B., Aerts, J., Albers, T., Alidoost, F., Andela, B., Camphuijsen, J., Dzigan, Y., Van Haren, R., Hutton, E., Kalverla, P., Van Meersbergen, M., Van Den Oord, G., Pelupessy, I., Smeets, S., Verhoeven, S., … Weel, B. (2022). The eWaterCycle platform for open and FAIR hydrological collaboration. Geoscientific Model Development, 15(13), 5371–5390. https://doi.org/10.5194/gmd-15-5371-2022

Jonkeren, O., PhD, Rietveld, P., Van Ommeren, J., Vrije Universiteit, RIZA, & Dutch national research programme “Climate changes spatial planning”. (2007). Climate Change and Inland Waterway Transport: Welfare Effects of Low Water Levels on the river Rhine. In Journal of Transport Economics and Policy, Vrije Universiteit, West-European inland waterway transport market, & RIZA, Journal Of Transport Economics And Policy (Vol. 41, pp. 387–411). https://docserver.ingentaconnect.com/deliver/connect/lse/00225258/v41n3/s6.pdf?expires=1715254089&id=0000&titleid=1311&checksum=98A14636432464F28DFF1EF1FE077CE4&host=https://www.ingentaconnect.com

Journal of Transport Economics and Policy. (z.d.). Climate change and inland waterway transport: welfare effects of …: Ingenta Connect. https://www.ingentaconnect.com/content/lse/jtep/2007/00000041/00000003/art00006

Knoben, W., Freer, J., Fowler, K., Peel, M. C., & Woods, R. (2019). Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations. Geoscientific Model Development, 12(6), 2463–2480. https://doi.org/10.5194/gmd-12-2463-2019

Kour, R., Patel, N., & Krishna, A. P. (2016). Climate and hydrological models to assess the impact of climate change on hydrological regime: a review. Arabian Journal Of Geosciences, 9(9). https://doi.org/10.1007/s12517-016-2561-0

Kwadijk, J., & Rotmans, J. (1995). The impact of climate change on the river rhine: A scenario study. Climatic Change, 30(4), 397–425. https://doi.org/10.1007/bf01093854

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrol. Res., 41, 295– 319, https://doi.org/10.2166/nh.2010.007, 2010. a

Lobanova, A., Liersch, S., Nunes, J. P., Didovets, I., Stagl, J., Huang, S., Koch, H., Del Rocío Rivas López, M., Maule, C. F., Hattermann, F. F., & Krysanova, V. (2018). Hydrological impacts of moderate and high-end climate change across European river basins. Journal Of Hydrology. Regional Studies, 18, 15–30. https://doi.org/10.1016/j.ejrh.2018.05.003

Muller, N., & King, N. (2023, 20 september). Plans to “deepen” Rhine river hit resistance. dw.com. https://www.dw.com/en/drought-ships-cargo-vessels-shippingfossil-fuels-energy-shortage-crisis/a-63255851

Nakicenovic, N., & Swart, R. (2000, 1 juli). Emissions scenarios - special report of the Intergovernmental Panel on Climate Change. https://www.osti.gov/etdeweb/biblio/20134132

Orlovius, V. (1994). Regulations and prescriptions for the navigation on the Rhine. Central Rhine Commission. https://www.ccr-zkr.org/files/bibliographie/VOrlovius-Regulationsand-prescr-for-the-nav-on-the-rhine.pdf

Parmet, B., Kwadijk, J., & Raak, M. (1995). Impact of climate change on the discharge of the river rhine. In Studies in environmental science (pp. 911– 918). https://doi.org/10.1016/s0166-1116(06)80115-9

Ruijsch, J., Verstegen, J. A., Sutanudjaja, E. H., & Karssenberg, D. (2021). Systemic change in the Rhine-Meuse basin: Quantifying and explaining parameters trends in the PCRGLOBWB global hydrological model. Advances in Water Resources, 155,104013. https://doi.org/10.1016/j.advwatres.2021.104013

Scheepers, H. M., Wang, J., Gan, T. Y., & Kuo, C. (2018). The impact of climate change on inland waterway transport: Effects of low water levels on the Mackenzie River. Journal Of Hydrology, 566, 285–298. https://doi.org/10.1016/j.jhydrol.2018.08.059

Schneider, C., Laizé, C., Acreman, M., & Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrology And Earth System Sciences, 17(1), 325–339. https://doi.org/10.5194/hess-17-325-2013

Sutanudjaja, E. H., Van Beek, R., Wanders, N., Wada, Y., Bosmans, J., Drost, N., Van Der Ent, R., De Graaf, I., Hoch, J., De Jong, K., Karssenberg, D., López, P. L., Peßenteiner, S., Schmitz, O., Straatsma, M., Vannametee, E., Wisser, D., & Bierkens, M. F. P. (2018). PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11(6), 2429–2453. https://doi.org/10.5194/gmd-11-2429-2018

Steiger, G.J., (2024), GJsteiger/BEP_thesis_Rhine_catchment: BEP thesis: Climate change impact on shipping on the river Rhine (WflowRhineV1.0), Zenodo, https://doi.org/10.5281/zenodo.11657741

Tama, D. R., Limantara, L. M., Suhartanto, E., & Devia, Y. P. (2023). The Reliability of W-flow Run-off-Rainfall Model in Predicting Rainfall to the Discharge. Civil Engineering Journal, 9(7), 1768–1778. https://doi.org/10.28991/cej-2023-09-07-015 22

Trotter, L., Knoben, W., Fowler, K., Saft, M., & Peel, M. C. (2022). Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability. Geoscientific Model Development, 15(16), 6359–6369. https://doi.org/10.5194/gmd-15-6359-2022

Van Der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation, Int. J. Geogr. Inf. Sci., 24, 189–212, https://doi.org/10.1080/13658810802549154, 2010. a

Van Verseveld, W., Weerts, A., Visser, M., Buitink, J., Imhoff, R., Boisgontier, H., Bouaziz, L., Eilander, D., Hegnauer, M., Velden, C. T., & Russell, B. (2024). Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications. Geoscientific Model Development, 17(8), 3199–3234. https://doi.org/10.5194/gmd-17-3199-2024

Van Vliet, M. T. H., Franssen, W., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., & Kabat, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change, 23(2), 450–464. https://doi.org/10.1016/j.gloenvcha.2012.11.002

Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A. M., Hibbard, K., Hurtt, G., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakićenović, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J., Da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.18

Zwolsman, J., & Van Bokhoven, A. (2007). Impact of summer droughts on water quality of the Rhine River - a preview of climate change? Water Science & Technology, 56(4), 45–55. https://doi.org/10.2166/wst.2007.535